2) 编程计算下面卷积:
已 知 h
1
[n]={ 0.0031,0.0044, -0.0031, -0.0272,-0.0346,0.0374, 0.1921, 0.3279
0.3279,0.1921,0.0374,-0.0346,-0.0272,-0.0031, 0.0044,0.0031 },n=0,1,...,15;
h
2
[n]= {-0.0238,0.0562,-0.0575,-0.1302,0.5252, -0.6842,-0.3129,5.6197,5.6197,
-0.3129,-0.6842,0.5252,-0.1302,-0.0575,0.0562,-0.0238}, n=0,1,...,15。
a、当 h [n]= h
1
[n]时,输入分别为 x
1
[n], x
2
[n]和 x
3
[n]时系统的输出 y[n], 并画出波形图。
b、当 h [n]= h
2
[n]时,输入分别为 x
1
[n], x
2
[n]和 x
3
[n]时系统的输出 y[n], 并画出波形图。
3) 编程实现以下信号的频谱分析:
a、输入信号 x
1
[n], x
2
[n] 和 x
3
[n]的频谱,并画出频谱图;
b、冲激响应 h [n]= h
1
[n]时 h [n]的频谱,三种输入信号下输出 y[n]的频谱,并画出 h
[n]和输出信号的频谱图;
c、冲激响应 h [n]= h
2
[n]时 h [n 的频谱,三种输入信号下输出 y[n]的频谱,并画出 h
[n]和输出信号的频谱图。
4)根据输入信号、h [n]和输出信号的频谱,验证输出信号的频谱与输入信号、h [n]的频谱
关系(或卷积性质),即是否满足
。
5)分析以上各种情况下,输出信号及频谱不同原因
(1)
clear;
n=-4:4;
x1=cos(0.25*pi*n);
subplot(2,2,1),stem(n,x1),grid on;
title('余弦信号 x1[n]')
xlabel('Time index n');
x2=cos(1.25*pi*n);
subplot(2,2,2),stem(n,x2),grid on;
title('余弦信号 x2[n]')
xlabel('Time index n');
x3=x1+x2;
subplot(2,2,3),stem(n,x3),grid on;
title('余弦相加信号 x3[n]')
xlabel('Time index n');